ヒルベルトの無限ホテルのパラドックス(ヒルベルトのむげんホテルのパラドックス、)とは、集合論で無限集合を認めると、有限集合の場合と全く違った奇妙な事態が起こることを示すパラドックスで、ダフィット・ヒルベルトによって示された。論理的・数学的には正しいが、直観に反するという意味でのパラドックスである。簡単のため、以下の記述においては、無限とは可算無限を意味するものとする。しかし、選択公理を仮定すれば、任意の無限集合は可算無限集合を部分集合に持つため、一般の無限の場合には少し議論を修正するだけでよい。
ヒルベルトの無限ホテルのパラドックス(ヒルベルトのむげんホテルのパラドックス、)とは、集合論で無限集合を認めると、有限集合の場合と全く違った奇妙な事態が起こることを示すパラドックスで、ダフィット・ヒルベルトによって示された。論理的・数学的には正しいが、直観に反するという意味でのパラドックスである。簡単のため、以下の記述においては、無限とは可算無限を意味するものとする。しかし、選択......