初等的な集合論において、カントールの定理 (Cantor's theorem) は次のように述べている。任意の集合 ''A'' に対して、''A'' のすべての部分集合の集合(''A'' の冪集合)は ''A'' 自身よりも真に大きい濃度 (数学)|濃度を持つ。有限集合に対して、カントールの定理は下に与えられる証明よりもはるかにシンプルな証明によって正しいと確かめることができる。''n'' 個の要素からなる集合に対して、空部分集合、ただ 1 つの要素を持つ ''A'' の部分集合、etc. を数えて、 個の部分集合があり、部分集合の集合の濃度は明らかに大き......
初等的な集合論において、カントールの定理 (Cantor's theorem) は次のように述べている。任意の集合 ''A'' に対して、''A'' のすべての部分集合の集合(''A'' の冪集合)は ''A'' 自身よりも真に大きい濃度 (数学)|濃度を持つ。有限集合に対して、カントールの定理は下に与えられる証明よりもはるかにシンプルな証明によって正しいと確かめることができる。......