自己組織化写像(じこそしきかしゃぞう、Self-organizing maps, SOM, Self-organizing feature maps, SOFM)はニューラルネットワークの一種であり、大脳皮質の視覚野をモデル化したものである。自己組織化写像はコホネンによって提案されたモデルであり、教師なし学習によって入力データを任意の次元へ写像することができる。主に1~3次元への写像に用いられ、多次元のデータの可視化が可能である。出力となる空間をマップ(map)、競合層(competitive layer)、もしくは出力層(output layer)と呼ぶ......
自己組織化写像(じこそしきかしゃぞう、Self-organizing maps, SOM, Self-organizing feature maps, SOFM)はニューラルネットワークの一種であり、大脳皮質の視覚野をモデル化したものである。自己組織化写像はコホネンによって提案されたモデルであり、教師なし学習によって入力データを任意の次元へ写像することができる。主に1~3次元への......