マルコフ連鎖モンテカルロ法(マルコフれんさモンテカルロほう、Markov chain Monte Carlo methods、MCMC)とは、求める確率分布を均衡分布として持つマルコフ連鎖を作成することをもとに、確率分布のサンプリングを行うアルゴリズムの総称である。M-H アルゴリズムやギブスサンプリングなどのランダムウォーク法もこれに含まれる。充分に多くの回数の試行を行った後のマルコフ連鎖の状態は求める目標分布の標本として用いられる。試行の回数を増やすとともにサンプルの品質も向上する。求められる特性を持つマルコフ連鎖を作成することは通常難しくない。問題は......
マルコフ連鎖モンテカルロ法(マルコフれんさモンテカルロほう、Markov chain Monte Carlo methods、MCMC)とは、求める確率分布を均衡分布として持つマルコフ連鎖を作成することをもとに、確率分布のサンプリングを行うアルゴリズムの総称である。M-H アルゴリズムやギブスサンプリングなどのランダムウォーク法もこれに含まれる。充分に多くの回数の試行を行った後の......