ブースティング(Boosting)とは、教師あり学習を実行するための機械学習メタアルゴリズムの一種。ブースティングは、Michael Kearns の提示した「一連の弱い学習機をまとめることで強い学習機を生成できるか?」という疑問に基づいている。弱い学習機は、真の分類と若干の相関のある分類器と定義される。対照的に、強い学習機とは真の分類とよく相関する分類器である。Michael Kearns の疑問への肯定的解答は、機械学習や統計学に多大な影響を及ぼしている。
ブースティング(Boosting)とは、教師あり学習を実行するための機械学習メタアルゴリズムの一種。ブースティングは、Michael Kearns の提示した「一連の弱い学習機をまとめることで強い学習機を生成できるか?」という疑問に基づいている。弱い学習機は、真の分類と若干の相関のある分類器と定義される。対照的に、強い学習機とは真の分類とよく相関する分類器である。Michael ......